
Package: SimBIID (via r-universe)
September 2, 2024

Title Simulation-Based Inference Methods for Infectious Disease Models

Version 0.2.1.9000

Description Provides some code to run simulations of state-space
models, and then use these in the Approximate Bayesian
Computation Sequential Monte Carlo (ABC-SMC) algorithm of Toni
et al. (2009) <doi:10.1098/rsif.2008.0172> and a bootstrap
particle filter based particle Markov chain Monte Carlo (PMCMC)
algorithm (Andrieu et al., 2010
<doi:10.1111/j.1467-9868.2009.00736.x>). Also provides
functions to plot and summarise the outputs.

License GPL (>= 3)

URL https://github.com/tjmckinley/SimBIID

BugReports https://github.com/tjmckinley/SimBIID/issues

Depends R (>= 3.5)

Imports stats, dplyr, purrr, tibble, ggplot2, tidyr, mvtnorm,
grDevices, RColorBrewer, Rcpp, RcppXPtrUtils, coda

Suggests parallel, GGally, testthat

LinkingTo Rcpp, RcppArmadillo

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Repository https://tjmckinley.r-universe.dev

RemoteUrl https://github.com/tjmckinley/simbiid

RemoteRef HEAD

RemoteSha c0338ea3aa69ceaa80ea43d26e4d6ee77cd05f2c

1

https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://github.com/tjmckinley/SimBIID
https://github.com/tjmckinley/SimBIID/issues

2 SimBIID-package

Contents

SimBIID-package . 2
ABCRef . 3
ABCSMC . 5
compileRcpp . 9
ebola . 10
mparseRcpp . 11
plot.ABCSMC . 13
plot.PMCMC . 16
plot.SimBIID_runs . 18
PMCMC . 20
predict.PMCMC . 24
print.ABCSMC . 26
print.PMCMC . 28
print.SimBIID_model . 30
print.SimBIID_runs . 31
run . 32
smallpox . 34
summary.ABCSMC . 35
summary.PMCMC . 37
window.PMCMC . 39

Index 42

SimBIID-package Simulation-based inference for infectious disease models

Description

Package implements various simulation-based inference routines for infectious disease models.

Details

Provides some code to run simulations of state-space models, and then use these in the Approxi-
mate Bayesian Computation Sequential Monte Carlo (ABC-SMC) algorithm of Toni et al. (2009)
<doi:10.1098/rsif.2008.0172> and a bootstrap particle filter based particle Markov chain Monte
Carlo (PMCMC) algorithm (Andrieu et al., 2010 <doi:10.1111/j.1467-9868.2009.00736.x>). Also
provides functions to plot and summarise the outputs.

Author(s)

Trevelyan J. McKinley <t.mckinley@exeter.ac.uk>

ABCRef 3

ABCRef Produces ABC reference table

Description

Produces reference table of simulated outcomes for use in various Approximate Bayesian Compu-
tation (ABC) algorithms.

Usage

ABCRef(
npart,
priors,
pars,
func,
sumNames,
parallel = FALSE,
mc.cores = NA,
...

)

Arguments

npart The number of particles (must be a positive integer).

priors A data.frame containing columns parnames, dist, p1 and p2, with num-
ber of rows equal to the number of parameters. The column parname simply
gives names to each parameter for plotting and summarising. Each entry in the
dist column must contain one of c("unif", "norm", "gamma"), and the cor-
responding p1 and p2 entries relate to the hyperparameters (lower and upper
bounds in the uniform case; mean and standard deviation in the normal case;
and shape and rate in the gamma case).

pars A named vector or matrix of parameters to use for the simulations. If pars is a
vector then this is repeated ‘npart‘ times, else it must be a matrix with ‘npart‘
rows. You cannot specify both ‘pars‘ and ‘priors‘.

func Function that runs the simulator. The first argument must be pars. The function
must return a vector of simulated summary measures, or a missing value (NA)
if there is an error. The output from the function must be a vector with length
equal to length(sumNames).

sumNames A character vector of summary statistic names.

parallel A logical determining whether to use parallel processing or not.

mc.cores Number of cores to use if using parallel processing.

... Extra arguments to be passed to func.

4 ABCRef

Details

Runs simulations for a large number of particles, either pre-specified or sampled from the a set of
given prior distributions. Returns a table of summary statistics for each particle. Useful for deciding
on initial tolerances during an ABCSMC run, or for producing a reference table to use in e.g. the ABC
with Random Forests approach of Raynal et al. (2017).

Value

An data.frame object with npart rows, where the first p columns correspond to the proposed
parameters, and the remaining columns correspond to the simulated outputs.

References

Raynal, L, Marin J-M, Pudlo P, Ribatet M, Robert CP and Estoup A. (2017) <ArXiv:1605.05537>

Examples

set up SIR simulation model
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars

)
model <- compileRcpp(model)

generate function to run simulators
and produce final epidemic size and time
summary statistics
simRef <- function(pars, model) {

run model over a 100 day period with
one initial infective in a population
of 120 individuals
sims <- model(pars, 0, 100, c(119, 1, 0))

return vector of summary statistics
c(finaltime = sims[2], finalsize = sims[5])

}

set priors
priors <- data.frame(

parnames = c("beta", "gamma"),
dist = rep("gamma", 2),
stringsAsFactors = FALSE

)
priors$p1 <- c(10, 10)

ABCSMC 5

priors$p2 <- c(10^4, 10^2)

produce reference table by sampling from priors
(add additional arguments to 'func' at the end)
refTable <- ABCRef(

npart = 100,
priors = priors,
func = simRef,
sumNames = c("finaltime", "finalsize"),
model = model

)
refTable

ABCSMC Runs ABC-SMC algorithm

Description

Runs the Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) algorithm of
Toni et al. (2009) for fitting infectious disease models to time series count data.

Usage

ABCSMC(x, ...)

S3 method for class 'ABCSMC'
ABCSMC(
x,
tols = NULL,
ptols = NULL,
mintols = NULL,
ngen = 1,
parallel = FALSE,
mc.cores = NA,
...

)

Default S3 method:
ABCSMC(
x,
priors,
func,
u,
tols = NULL,
ptols = NULL,
mintols = NULL,

6 ABCSMC

ngen = 1,
npart = 100,
parallel = FALSE,
mc.cores = NA,
...

)

Arguments

x An ABCSMC object or a named vector with entries containing the observed sum-
mary statistics to match to. Names must match to ‘tols‘.

... Further arguments to pass to func. (Not used if extending runs.)

tols A vector or matrix of tolerances, with the number of rows defining the num-
ber of generations required, and columns defining the summary statistics to
match to. If a vector, then the length determines the summary statistics. The
columns/entries must match to those in ‘x‘.

ptols The proportion of simulated outcomes at each generation to use to derive adap-
tive tolerances.

mintols A vector of minimum tolerance levels.

ngen The number of generations of ABC-SMC to run.

parallel A logical determining whether to use parallel processing or not.

mc.cores Number of cores to use if using parallel processing.

priors A data.frame containing columns parnames, dist, p1 and p2, with num-
ber of rows equal to the number of parameters. The column parname simply
gives names to each parameter for plotting and summarising. Each entry in the
dist column must contain one of c("unif", "norm", "gamma"), and the cor-
responding p1 and p2 entries relate to the hyperparameters (lower and upper
bounds in the uniform case; mean and standard deviation in the normal case;
and shape and rate in the gamma case).

func Function that runs the simulator and checks whether the simulation matches
the data. The first four arguments must be pars, data, tols and u. If the
simulations do not match the data then the function must return an NA, else it
must returns a vector of simulated summary measures. In this latter case the
output from the function must be a vector with length equal to ncol(data) and
with entries in the same order as the columns of data.

u A named vector of initial states.

npart An integer specifying the number of particles.

Details

Samples initial particles from the specified prior distributions and then runs a series of generations
of ABC-SMC. The generations can either be specified with a set of fixed tolerances, or by setting the
tolerances at each new generation as a quantile of the tolerances of the accepted particles at the pre-
vious generation. Uses bisection method as detailed in McKinley et al. (2018). Passing an ABCSMC
object into the ABCSMC() function acts as a continuation method, allowing further generations to be
run.

ABCSMC 7

Value

An ABCSMC object, essentially a list containing:

• pars: a list of matrix objects containing the accepted particles. Each element of the list
corresponds to a generation of ABC-SMC, with each matrix being of dimension npart x
npars;

• output: a list of matrix objects containing the simulated summary statistics. Each element
of the list corresponds to a generation of ABC-SMC, with each matrix being of dimension
npart x ncol(data);

• weights: a list of vector objects containing the particle weights. Each element of the list
corresponds to a generation of ABC-SMC, with each vector being of length npart;

• ESS: a list of effective sample sizes. Each element of the list corresponds to a generation of
ABC-SMC, with each vector being of length npart;

• accrate: a vector of length nrow(tols) containing the acceptance rates for each generation
of ABC;

• tols: a copy of the tols input;

• ptols: a copy of the ptols input;

• mintols: a copy of the mintols input;

• priors: a copy of the priors input;

• data: a copy of the data input;

• func: a copy of the func input;

• u a copy of the u input;

• addargs: a copy of the ... inputs.

References

Toni T, Welch D, Strelkowa N, Ipsen A and Stumpf MP (2009) <doi:10.1098/rsif.2008.0172>

McKinley TJ, Cook AR and Deardon R (2009) <doi:10.2202/1557-4679.1171>

McKinley TJ, Vernon I, Andrianakis I, McCreesh N, Oakley JE, Nsubuga RN, Goldstein M and
White RG (2018) <doi:10.1214/17-STS618>

See Also

print.ABCSMC, plot.ABCSMC, summary.ABCSMC

Examples

set up SIR simulationmodel
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

8 ABCSMC

transitions = transitions,
compartments = compartments,
pars = pars

)
model <- compileRcpp(model)

generate function to run simulators
and return summary statistics
simSIR <- function(pars, data, tols, u, model) {

run model
sims <- model(pars, 0, data[2] + tols[2], u)

this returns a vector of the form:
completed (1/0), t, S, I, R (here)
if(sims[1] == 0) {

if simulation rejected
return(NA)

} else {
extract finaltime and finalsize
finaltime <- sims[2]
finalsize <- sims[5]

}

return vector if match, else return NA
if(all(abs(c(finalsize, finaltime) - data) <= tols)){

return(c(finalsize, finaltime))
} else {

return(NA)
}

}

set priors
priors <- data.frame(

parnames = c("beta", "gamma"),
dist = rep("gamma", 2),
stringsAsFactors = FALSE

)
priors$p1 <- c(10, 10)
priors$p2 <- c(10^4, 10^2)

define the targeted summary statistics
data <- c(

finalsize = 30,
finaltime = 76

)

set initial states (1 initial infection
in population of 120)
iniStates <- c(S = 119, I = 1, R = 0)

set initial tolerances
tols <- c(

compileRcpp 9

finalsize = 50,
finaltime = 50

)

run 2 generations of ABC-SMC
setting tolerance to be 50th
percentile of the accepted
tolerances at each generation
post <- ABCSMC(

x = data,
priors = priors,
func = simSIR,
u = iniStates,
tols = tols,
ptol = 0.2,
ngen = 2,
npart = 50,
model = model

)
post

run one further generation
post <- ABCSMC(post, ptols = 0.5, ngen = 1)
post
summary(post)

plot posteriors
plot(post)

plot outputs
plot(post, "output")

compileRcpp Compiles SimBIID_model object

Description

Compiles an object of class SimBIID_model into an XPtr object for use in Rcpp functions, or an
object of class function for calling directly from R.

Usage

compileRcpp(model)

Arguments

model An object of class SimBIID_model.

10 ebola

Value

An object of class XPtr that points to the compiled function, or an R function object for calling
directly from R.

See Also

mparseRcpp

Examples

set up SIR simulationmodel
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars

)

compile model to be run directly
model <- compileRcpp(model)
model

set initial states (1 initial infection
in population of 120)
iniStates <- c(S = 119, I = 1, R = 0)

set parameters
pars <- c(beta = 0.001, gamma = 0.1)

run compiled model
model(pars, 0, 100, iniStates)

ebola Time series counts of ebola cases

Description

A dataset containing time series counts for the number of new individuals exhibiting clinical signs,
and the number of new removals each day for the 1995 Ebola epidemic in the Democratic Republic
of Congo

mparseRcpp 11

Usage

ebola

Format

A data frame with 192 rows and 3 variables:

time days from 1st January 1995

clin_signs number of new clinical cases at each day

removals number of new removals at each day

Source

Khan AS et al. (1999) <doi:10.1086/514306>

mparseRcpp Parse custom model using SimInf style markup

Description

Parse custom model using SimInf style markup. Does not have full functionality of mparse. Cur-
rently only supports simulations on a single node.

Usage

mparseRcpp(
transitions = NULL,
compartments = NULL,
pars = NULL,
obsProcess = NULL,
addVars = NULL,
stopCrit = NULL,
tspan = FALSE,
incidence = FALSE,
afterTstar = NULL,
PF = FALSE,
runFromR = TRUE

)

Arguments

transitions character vector containing transitions on the form "X -> ... -> Y". The left
(right) side is the initial (final) state and the propensity is written in between
the ->-signs. The special symbol @ is reserved for the empty set. For ex-
ample, transitions = c("S -> k1*S*I -> I", "I -> k2*I -> R") expresses a
SIR model.

12 mparseRcpp

compartments contains the names of the involved compartments, for example, compartments
= c("S", "I", "R").

pars a character vector containing the names of the parameters.

obsProcess data.frame determining the observation process. Columns must be in the or-
der: dataNames, dist, p1, p2. dataNames is a character denoting the name
of the variable that will be output from the observation process; dist is a
character specifying the distribution of the observation process (must be one
of "unif", "pois", "norm" or "binom" at the current time); p1 is the first pa-
rameter (the lower bound in the case of "unif", the rate in the case of "pois",
the mean in the case of "norm" or the size in the case of "binom"); and finally
p2 is the second parameter (the upper bound in the case of "unif", NA in the
case of "pois", the standard deviation in the case of "norm", and prob in the
case of "binom").

addVars a character vector where the names specify the additional variables to be added
to the function call. These can be used to specify variables that can be used for
e.g. additional stopping criteria.

stopCrit A character vector including additional stopping criteria for rejecting simula-
tions early. These will be inserted within if(CRIT){out[0] = 0; return out;}
statements within the underlying Rcpp code, which a return value of 0 corre-
sponds to rejecting the simulation. Variables in CRIT must match either those in
compartments and/or addVars.

tspan A logical determining whether to return time series counts or not.

incidence A logical specifying whether to return incidence curves in addition to counts.

afterTstar A character containing code to insert after each new event time is generated.

PF A logical determining whether to compile the code for use in a particle filter.

runFromR logical determining whether code is to be compiled to run directly in R, or
whether to be compiled as an XPtr object for use in Rcpp.

Details

Uses a SimInf style markup to create compartmental state-space written using Rcpp. A helper run
function exists to compile and run the model. Another helper function, compileRcpp, can compile
the model to produce a function that can be run directly from R, or compiled into an external pointer
(using the RcppXPtrUtils package).

Value

An object of class SimBIID_model, which is essentially a list containing elements:

• code: parsed code to compile;

• transitions: copy of transitions argument;

• compartments: copy of compartments argument;

• pars: copy of pars argument;

• obsProcess: copy of obsProcess argument;

• stopCrit: copy of stopCrit argument;

plot.ABCSMC 13

• addVars: copy of addVars argument;

• tspan: copy of tspan argument;

• incidence: copy of incidence argument;

• afterTstar: copy of afterTstar argument;

• PF: copy of PF argument;

• runFromR: copy of runFromR argument.

This can be compiled into an XPtr or function object using compileRcpp().

See Also

run, compileRcpp, print.SimBIID_model

Examples

set up SIR simulation model
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars

)

compile and run model
sims <- run(

model = model,
pars = c(beta = 0.001, gamma = 0.1),
tstart = 0,
tstop = 100,
u = c(S = 119, I = 1, R = 0)

)
sims

plot.ABCSMC Plots ABCSMC objects

Description

Plot method for ABCSMC objects.

14 plot.ABCSMC

Usage

S3 method for class 'ABCSMC'
plot(
x,
type = c("post", "output"),
gen = NA,
joint = FALSE,
transfunc = NA,
...

)

Arguments

x An ABCSMC object.

type Takes the value "post" if you want to plot posterior distributions. Takes the
value "output" if you want to plot the simulated outputs.

gen A vector of generations to plot. If left missing then defaults to all generations.

joint A logical describing whether joint or marginal distributions are wanted.

transfunc Is a function object where the arguments to the function must match all or a
subset of the parameters in the model. This function needs to return a data.frame
object with columns containing the transformed parameters.

... Not used here.

Value

A plot of the ABC posterior distributions for different generations, or the distributions of the simu-
lated summary measures for different generations.

See Also

ABCSMC, print.ABCSMC, summary.ABCSMC

Examples

set up SIR simulation model
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars

)
model <- compileRcpp(model)

plot.ABCSMC 15

generate function to run simulators
and return summary statistics
simSIR <- function(pars, data, tols, u, model) {

run model
sims <- model(pars, 0, data[2] + tols[2], u)

this returns a vector of the form:
completed (1/0), t, S, I, R (here)
if(sims[1] == 0) {

if simulation rejected
return(NA)

} else {
extract finaltime and finalsize
finaltime <- sims[2]
finalsize <- sims[5]

}

return vector if match, else return NA
if(all(abs(c(finalsize, finaltime) - data) <= tols)){

return(c(finalsize, finaltime))
} else {

return(NA)
}

}

set priors
priors <- data.frame(

parnames = c("beta", "gamma"),
dist = rep("gamma", 2),
stringsAsFactors = FALSE

)
priors$p1 <- c(10, 10)
priors$p2 <- c(10^4, 10^2)

define the targeted summary statistics
data <- c(

finalsize = 30,
finaltime = 76

)

set initial states (1 initial infection
in population of 120)
iniStates <- c(S = 119, I = 1, R = 0)

set initial tolerances
tols <- c(

finalsize = 50,
finaltime = 50

)

run 2 generations of ABC-SMC
setting tolerance to be 50th

16 plot.PMCMC

percentile of the accepted
tolerances at each generation
post <- ABCSMC(

x = data,
priors = priors,
func = simSIR,
u = iniStates,
tols = tols,
ptol = 0.2,
ngen = 2,
npart = 50,
model = model

)
post

run one further generation
post <- ABCSMC(post, ptols = 0.5, ngen = 1)
post
summary(post)

plot posteriors
plot(post)

plot outputs
plot(post, "output")

plot.PMCMC Plots PMCMC objects

Description

Plot method for PMCMC objects.

Usage

S3 method for class 'PMCMC'
plot(
x,
type = c("post", "trace"),
joint = FALSE,
transfunc = NA,
ask = TRUE,
...

)

plot.PMCMC 17

Arguments

x A PMCMC object.

type Takes the value "post" if you want to plot posterior distributions. Takes the
value "trace" if you want to plot the trace plots.

joint A logical describing whether joint or marginal distributions are wanted.

transfunc Is a function object where the arguments to the function must match all or a
subset of the parameters in the model. This function needs to return a data.frame
object with columns containing the transformed parameters.

ask Should the user ask before moving onto next trace plot.

... Not used here.

Value

A plot of the (approximate) posterior distributions obtained from fitting a particle Markov chain
Monte Carlo algorithm, or provides corresponding trace plots.

See Also

PMCMC, print.PMCMC, predict.PMCMC, summary.PMCMC window.PMCMC

Examples

set up data to pass to PMCMC
flu_dat <- data.frame(

t = 1:14,
Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4)

)

set up observation process
obs <- data.frame(

dataNames = "Robs",
dist = "pois",
p1 = "R + 1e-5",
p2 = NA,
stringsAsFactors = FALSE

)

set up model (no need to specify tspan
argument as it is set in PMCMC())
transitions <- c(

"S -> beta * S * I / (S + I + R + R1) -> I",
"I -> gamma * I -> R",
"R -> gamma1 * R -> R1"

)
compartments <- c("S", "I", "R", "R1")
pars <- c("beta", "gamma", "gamma1")
model <- mparseRcpp(

transitions = transitions,

18 plot.SimBIID_runs

compartments = compartments,
pars = pars,
obsProcess = obs

)

set priors
priors <- data.frame(

parnames = c("beta", "gamma", "gamma1"),
dist = rep("unif", 3),
stringsAsFactors = FALSE)

priors$p1 <- c(0, 0, 0)
priors$p2 <- c(5, 5, 5)

define initial states
iniStates <- c(S = 762, I = 1, R = 0, R1 = 0)

set.seed(50)

run PMCMC algorithm
post <- PMCMC(

x = flu_dat,
priors = priors,
func = model,
u = iniStates,
npart = 25,
niter = 5000,
nprintsum = 1000

)

plot MCMC traces
plot(post, "trace")

continue for some more iterations
post <- PMCMC(post, niter = 5000, nprintsum = 1000)

plot traces and posteriors
plot(post, "trace")
plot(post)

remove burn-in
post <- window(post, start = 5000)

summarise posteriors
summary(post)

plot.SimBIID_runs Plots SimBIID_runs objects

plot.SimBIID_runs 19

Description

Plot method for SimBIID_runs objects.

Usage

S3 method for class 'SimBIID_runs'
plot(
x,
which = c("all", "t"),
type = c("runs", "sums"),
rep = NA,
quant = 0.9,
data = NULL,
matchData = NULL,
...

)

Arguments

x An SimBIID_runs object.

which A character vector of states to plot. Can be "all" to plot all states (and final
event times), or "t" to plot final event times.

type Character stating whether to plot full simulations over time ("runs") or sum-
maries ("sums").

rep An integer vector of simulation runs to plot.

quant A vector of quantiles (> 0.5) to plot if type == "runs".

data A data.frame containing time series count data, with the first column called t,
followed by columns of time-series counts.

matchData A character vector containing matches between the columns of data and the
columns of the model runs. Each entry must be of the form e.g. "SD = SR",
where SD is the name of the column in data, and SR is the name of the column
in x.

... Not used here.

Value

A plot of individual simulations and/or summaries of repeated simulations extracted from SimBIID_runs
object.

See Also

mparseRcpp, print.SimBIID_runs, run

20 PMCMC

Examples

set up SIR simulation model
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars,
tspan = TRUE

)

run 100 replicate simulations and
plot outputs
sims <- run(

model = model,
pars = c(beta = 0.001, gamma = 0.1),
tstart = 0,
tstop = 100,
u = c(S = 119, I = 1, R = 0),
tspan = seq(1, 100, length.out = 10),
nrep = 100

)
plot(sims, quant = c(0.55, 0.75, 0.9))

add replicate 1 to plot
plot(sims, quant = c(0.55, 0.75, 0.9), rep = 1)

PMCMC Runs particle MCMC algorithm

Description

Runs particle Markov chain Monte Carlo (PMCMC) algorithm using a bootstrap particle filter for
fitting infectious disease models to time series count data.

Usage

PMCMC(x, ...)

S3 method for class 'PMCMC'
PMCMC(
x,
niter = 1000,

PMCMC 21

nprintsum = 100,
adapt = TRUE,
adaptmixprop = 0.05,
nupdate = 100,
...

)

Default S3 method:
PMCMC(
x,
priors,
func,
u,
npart = 100,
iniPars = NA,
fixpars = FALSE,
niter = 1000,
nprintsum = 100,
adapt = TRUE,
propVar = NA,
adaptmixprop = 0.05,
nupdate = 100,
...

)

Arguments

x A PMCMC object, or a data.frame containing time series count data, with the
first column called t, followed by columns of time-series counts. The time-
series counts columns must be in the order of the ‘counts‘ object in the ‘func‘
function (see below).

... Not used here.

niter An integer specifying the number of iterations to run the MCMC.

nprintsum Prints summary of MCMC to screen every nprintsum iterations. Also defines
how often adaptive scaling of proposal variances occur.

adapt Logical determining whether to use adaptive proposal or not.

adaptmixprop Mixing proportion for adaptive proposal.

nupdate Controls when to start adaptive update.

priors A data.frame containing columns parnames, dist, p1 and p2, with num-
ber of rows equal to the number of parameters. The column parname simply
gives names to each parameter for plotting and summarising. Each entry in the
dist column must contain one of c("unif", "norm", "gamma"), and the cor-
responding p1 and p2 entries relate to the hyperparameters (lower and upper
bounds in the uniform case; mean and standard deviation in the normal case;
and shape and rate in the gamma case).

func A SimBIID_model object or an XPtr to simulation function. If the latter, then
this function must take the following arguments in order:

22 PMCMC

• NumericVector pars: a vector of parameters;
• double tstart: the start time;
• double tstop: the end time;
• IntegerVector u: a vector of states at time tstart;
• IntegerVector counts: a vector of observed counts at tstop.

u A named vector of initial states.

npart An integer specifying the number of particles for the bootstrap particle filter.

iniPars A named vector of initial values for the parameters of the model. If left unspec-
ified, then these are sampled from the prior distribution(s).

fixpars A logical determining whether to fix the input parameters (useful for determin-
ing the variance of the marginal likelihood estimates).

propVar A numeric (npars x npars) matrix with log (or logistic) covariances to use as (ini-
tial) proposal matrix. If left unspecified then defaults to diag(nrow(priors))
* (0.1 ^ 2) / nrow(priors).

Details

Function runs a particle MCMC algorithm using a bootstrap particle filter for a given model. If
running with fixpars = TRUE then this runs niter simulations using fixed parameter values. This
can be used to optimise the number of particles after a training run. Also has print(), summary(),
plot(), predict() and window() methods.

Value

If the code throws an error, then it returns a missing value (NA). If fixpars = TRUE it returns a list
of length 2 containing:

• output: a matrix with two columns. The first contains the simulated log-likelihood, and
the second is a binary indicator relating to whether the simulation was ’skipped’ or not (1 =
skipped, 0 = not skipped);

• pars: a vector of parameters used for the simulations.

If fixpars = FALSE, the routine returns a PMCMC object, essentially a list containing:

• pars: an mcmc object containing posterior samples for the parameters;

• u: a copy of the u input;

• accrate: the cumulative acceptance rate;

• npart: the chosen number of particles;

• time: the time taken to run the routine (in seconds);

• propVar: the proposal covariance for the parameter updates;

• data: a copy of the x input;

• priors: a copy of the priors input;

• func: a copy of the func input.

PMCMC 23

References

Andrieu C, Doucet A and Holenstein R (2010) <doi:10.1111/j.1467-9868.2009.00736.x>

See Also

print.PMCMC, plot.PMCMC, predict.PMCMC, summary.PMCMC window.PMCMC

Examples

set up data to pass to PMCMC
flu_dat <- data.frame(

t = 1:14,
Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4)

)

set up observation process
obs <- data.frame(

dataNames = "Robs",
dist = "pois",
p1 = "R + 1e-5",
p2 = NA,
stringsAsFactors = FALSE

)

set up model (no need to specify tspan
argument as it is set in PMCMC())
transitions <- c(

"S -> beta * S * I / (S + I + R + R1) -> I",
"I -> gamma * I -> R",
"R -> gamma1 * R -> R1"

)
compartments <- c("S", "I", "R", "R1")
pars <- c("beta", "gamma", "gamma1")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars,
obsProcess = obs

)

set priors
priors <- data.frame(

parnames = c("beta", "gamma", "gamma1"),
dist = rep("unif", 3),
stringsAsFactors = FALSE)

priors$p1 <- c(0, 0, 0)
priors$p2 <- c(5, 5, 5)

define initial states
iniStates <- c(S = 762, I = 1, R = 0, R1 = 0)

set.seed(50)

24 predict.PMCMC

run PMCMC algorithm
post <- PMCMC(

x = flu_dat,
priors = priors,
func = model,
u = iniStates,
npart = 25,
niter = 5000,
nprintsum = 1000

)

plot MCMC traces
plot(post, "trace")

continue for some more iterations
post <- PMCMC(post, niter = 5000, nprintsum = 1000)

plot traces and posteriors
plot(post, "trace")
plot(post)

remove burn-in
post <- window(post, start = 5000)

summarise posteriors
summary(post)

predict.PMCMC Predicts future course of outbreak from PMCMC objects

Description

Predict method for PMCMC objects.

Usage

S3 method for class 'PMCMC'
predict(object, tspan, npart = 50, ...)

Arguments

object A PMCMC object.

tspan A vector of times over which to output predictions.

npart The number of particles to use in the bootstrap filter.

... Not used here.

predict.PMCMC 25

Value

A SimBIID_runs object.

See Also

PMCMC, print.PMCMC, plot.PMCMC, summary.PMCMC window.PMCMC

Examples

set up data to pass to PMCMC
flu_dat <- data.frame(

t = 1:14,
Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4)

)

set up observation process
obs <- data.frame(

dataNames = "Robs",
dist = "pois",
p1 = "R + 1e-5",
p2 = NA,
stringsAsFactors = FALSE

)

set up model (no need to specify tspan
argument as it is set in PMCMC())
transitions <- c(

"S -> beta * S * I / (S + I + R + R1) -> I",
"I -> gamma * I -> R",
"R -> gamma1 * R -> R1"

)
compartments <- c("S", "I", "R", "R1")
pars <- c("beta", "gamma", "gamma1")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars,
obsProcess = obs

)

set priors
priors <- data.frame(

parnames = c("beta", "gamma", "gamma1"),
dist = rep("unif", 3),
stringsAsFactors = FALSE)

priors$p1 <- c(0, 0, 0)
priors$p2 <- c(5, 5, 5)

define initial states
iniStates <- c(S = 762, I = 1, R = 0, R1 = 0)

run PMCMC algorithm for first three days of data

26 print.ABCSMC

post <- PMCMC(
x = flu_dat[1:3,],
priors = priors,
func = model,
u = iniStates,
npart = 75,
niter = 10000,
nprintsum = 1000

)

plot traces
plot(post, "trace")

run predictions forward in time
post_pred <- predict(

window(post, start = 2000, thin = 8),
tspan = 4:14

)

plot predictions
plot(post_pred, quant = c(0.6, 0.75, 0.95))

print.ABCSMC Prints ABCSMC objects

Description

Print method for ABCSMC objects.

Usage

S3 method for class 'ABCSMC'
print(x, ...)

Arguments

x An ABCSMC object.

... Not used here.

Value

Summary outputs printed to the screen.

See Also

ABCSMC, plot.ABCSMC, summary.ABCSMC

print.ABCSMC 27

Examples

set up SIR simulationmodel
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars

)
model <- compileRcpp(model)

generate function to run simulators
and return summary statistics
simSIR <- function(pars, data, tols, u, model) {

run model
sims <- model(pars, 0, data[2] + tols[2], u)

this returns a vector of the form:
completed (1/0), t, S, I, R (here)
if(sims[1] == 0) {

if simulation rejected
return(NA)

} else {
extract finaltime and finalsize
finaltime <- sims[2]
finalsize <- sims[5]

}

return vector if match, else return NA
if(all(abs(c(finalsize, finaltime) - data) <= tols)){

return(c(finalsize, finaltime))
} else {

return(NA)
}

}

set priors
priors <- data.frame(

parnames = c("beta", "gamma"),
dist = rep("gamma", 2),
stringsAsFactors = FALSE

)
priors$p1 <- c(10, 10)
priors$p2 <- c(10^4, 10^2)

define the targeted summary statistics
data <- c(

28 print.PMCMC

finalsize = 30,
finaltime = 76

)

set initial states (1 initial infection
in population of 120)
iniStates <- c(S = 119, I = 1, R = 0)

set initial tolerances
tols <- c(

finalsize = 50,
finaltime = 50

)

run 2 generations of ABC-SMC
setting tolerance to be 50th
percentile of the accepted
tolerances at each generation
post <- ABCSMC(

x = data,
priors = priors,
func = simSIR,
u = iniStates,
tols = tols,
ptol = 0.2,
ngen = 2,
npart = 50,
model = model

)
post

run one further generation
post <- ABCSMC(post, ptols = 0.5, ngen = 1)
post
summary(post)

plot posteriors
plot(post)

plot outputs
plot(post, "output")

print.PMCMC Prints PMCMC objects

Description

Print method for PMCMC objects.

print.PMCMC 29

Usage

S3 method for class 'PMCMC'
print(x, ...)

Arguments

x A PMCMC object.

... Not used here.

Value

Summary outputs printed to the screen.

See Also

PMCMC, plot.PMCMC, predict.PMCMC, summary.PMCMC window.PMCMC

Examples

set up data to pass to PMCMC
flu_dat <- data.frame(

t = 1:14,
Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4)

)

set up observation process
obs <- data.frame(

dataNames = "Robs",
dist = "pois",
p1 = "R + 1e-5",
p2 = NA,
stringsAsFactors = FALSE

)

set up model (no need to specify tspan
argument as it is set in PMCMC())
transitions <- c(

"S -> beta * S * I / (S + I + R + R1) -> I",
"I -> gamma * I -> R",
"R -> gamma1 * R -> R1"

)
compartments <- c("S", "I", "R", "R1")
pars <- c("beta", "gamma", "gamma1")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars,
obsProcess = obs

)

set priors

30 print.SimBIID_model

priors <- data.frame(
parnames = c("beta", "gamma", "gamma1"),
dist = rep("unif", 3),
stringsAsFactors = FALSE)

priors$p1 <- c(0, 0, 0)
priors$p2 <- c(5, 5, 5)

define initial states
iniStates <- c(S = 762, I = 1, R = 0, R1 = 0)

set.seed(50)

run PMCMC algorithm
post <- PMCMC(

x = flu_dat,
priors = priors,
func = model,
u = iniStates,
npart = 25,
niter = 5000,
nprintsum = 1000

)

plot MCMC traces
plot(post, "trace")

continue for some more iterations
post <- PMCMC(post, niter = 5000, nprintsum = 1000)

plot traces and posteriors
plot(post, "trace")
plot(post)

remove burn-in
post <- window(post, start = 5000)

summarise posteriors
summary(post)

print.SimBIID_model Prints SimBIID_model objects

Description

Print method for SimBIID_model objects.

print.SimBIID_runs 31

Usage

S3 method for class 'SimBIID_model'
print(x, ...)

Arguments

x A SimBIID_model object.

... Not used here.

Value

Prints parsed Rcpp code to the screen.

print.SimBIID_runs Prints SimBIID_runs objects

Description

Print method for SimBIID_runs objects.

Usage

S3 method for class 'SimBIID_runs'
print(x, ...)

Arguments

x A SimBIID_runs object.

... Not used here.

Value

Summary outputs printed to the screen.

See Also

mparseRcpp, plot.SimBIID_runs, run

Examples

set up SIR simulation model
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

32 run

transitions = transitions,
compartments = compartments,
pars = pars,
tspan = TRUE

)

run 100 replicate simulations and
plot outputs
sims <- run(

model = model,
pars = c(beta = 0.001, gamma = 0.1),
tstart = 0,
tstop = 100,
u = c(S = 119, I = 1, R = 0),
tspan = seq(1, 100, length.out = 10),
nrep = 100

)
sims

run Runs SimBIID_model object

Description

Wrapper function that compiles (if necessary) and runs a SimBIID_model object. Returns results
in a user-friendly manner as a SimBIID_run object, for which print() and plot() generics are
provided.

Usage

run(
model,
pars,
tstart,
tstop,
u,
tspan,
nrep = 1,
parallel = FALSE,
mc.cores = NA

)

Arguments

model An object of class SimBIID_model.

pars A named vector of parameters.

run 33

tstart The time at which to start the simulation.

tstop The time at which to stop the simulation.

u A named vector of initial states.

tspan A numeric vector containing the times at which to save the states of the system.

nrep Specifies the number of simulations to run.

parallel A logical determining whether to use parallel processing or not.

mc.cores Number of cores to use if using parallel processing.

Value

An object of class SimBIID_run, essentially a list containing elements:

• sums: a data.frame() with summaries of the model runs. This includes columns run,
completed, t, u* (see help file for SimBIID_model for more details);

• runs: a data.frame() object, containing columns: run, t, u* (see help file for SimBIID_model
for more details). These contain time series counts for the simulations. Note that this will only
be returned if tspan = TRUE in the original SimBIID_model object.

• bootEnd: a time point denoting when bootstrapped estimates end and predictions begin (for
predict.PMCMC() method).

See Also

mparseRcpp, print.SimBIID_runs, plot.SimBIID_runs

Examples

set up SIR simulation model
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars

)

compile and run model
sims <- run(

model = model,
pars = c(beta = 0.001, gamma = 0.1),
tstart = 0,
tstop = 100,
u = c(S = 119, I = 1, R = 0)

)
sims

34 smallpox

add tspan option to return
time series counts at different
time points
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars,
tspan = TRUE

)
sims <- run(

model = model,
pars = c(beta = 0.001, gamma = 0.1),
tstart = 0,
tstop = 100,
u = c(S = 119, I = 1, R = 0),
tspan = seq(1, 100, length.out = 10)

)
sims

run 100 replicate simulations and
plot outputs
sims <- run(

model = model,
pars = c(beta = 0.001, gamma = 0.1),
tstart = 0,
tstop = 100,
u = c(S = 119, I = 1, R = 0),
tspan = seq(1, 100, length.out = 10),
nrep = 100

)
sims
plot(sims)

smallpox Time series counts of smallpox cases

Description

A dataset containing time series counts for the number of new removals for the 1967 Abakaliki
smallpox outbreak.

Usage

smallpox

Format

A data frame with 23 rows and 2 variables:

summary.ABCSMC 35

time days from initial observed removal

removals number of new removals in (time - 1, time)

Source

Thompson D and Foege W (1968) <https://apps.who.int/iris/bitstream/handle/10665/67462/WHO_SE_68.3.pdf>

summary.ABCSMC Summarises ABCSMC objects

Description

Summary method for ABCSMC objects.

Usage

S3 method for class 'ABCSMC'
summary(object, gen = NA, transfunc = NA, ...)

Arguments

object An ABCSMC object.

gen The generation of ABC that you want to extract. If left missing then defaults to
final generation.

transfunc Is a function object where the arguments to the function must match all or a
subset of the parameters in the model. This function needs to return a data.frame
object with columns containing the transformed parameters.

... Not used here.

Value

A data.frame with weighted posterior means and variances.

See Also

ABCSMC, print.ABCSMC, plot.ABCSMC

Examples

set up SIR simulationmodel
transitions <- c(

"S -> beta * S * I -> I",
"I -> gamma * I -> R"

)
compartments <- c("S", "I", "R")
pars <- c("beta", "gamma")
model <- mparseRcpp(

transitions = transitions,

36 summary.ABCSMC

compartments = compartments,
pars = pars

)
model <- compileRcpp(model)

generate function to run simulators
and return summary statistics
simSIR <- function(pars, data, tols, u, model) {

run model
sims <- model(pars, 0, data[2] + tols[2], u)

this returns a vector of the form:
completed (1/0), t, S, I, R (here)
if(sims[1] == 0) {

if simulation rejected
return(NA)

} else {
extract finaltime and finalsize
finaltime <- sims[2]
finalsize <- sims[5]

}

return vector if match, else return NA
if(all(abs(c(finalsize, finaltime) - data) <= tols)){

return(c(finalsize, finaltime))
} else {

return(NA)
}

}

set priors
priors <- data.frame(

parnames = c("beta", "gamma"),
dist = rep("gamma", 2),
stringsAsFactors = FALSE

)
priors$p1 <- c(10, 10)
priors$p2 <- c(10^4, 10^2)

define the targeted summary statistics
data <- c(

finalsize = 30,
finaltime = 76

)

set initial states (1 initial infection
in population of 120)
iniStates <- c(S = 119, I = 1, R = 0)

set initial tolerances
tols <- c(

finalsize = 50,

summary.PMCMC 37

finaltime = 50
)

run 2 generations of ABC-SMC
setting tolerance to be 50th
percentile of the accepted
tolerances at each generation
post <- ABCSMC(

x = data,
priors = priors,
func = simSIR,
u = iniStates,
tols = tols,
ptol = 0.2,
ngen = 2,
npart = 50,
model = model

)
post

run one further generation
post <- ABCSMC(post, ptols = 0.5, ngen = 1)
post
summary(post)

plot posteriors
plot(post)

plot outputs
plot(post, "output")

summary.PMCMC Summarises PMCMC objects

Description

Summary method for PMCMC objects.

Usage

S3 method for class 'PMCMC'
summary(object, transfunc = NA, ...)

Arguments

object A PMCMC object.

38 summary.PMCMC

transfunc Is a function object where the arguments to the function must match all or a
subset of the parameters in the model. This function needs to return a data.frame
object with columns containing the transformed parameters.

... Not used here.

Value

A summary.mcmc object.

See Also

PMCMC, print.PMCMC, predict.PMCMC, plot.PMCMC window.PMCMC

Examples

set up data to pass to PMCMC
flu_dat <- data.frame(

t = 1:14,
Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4)

)

set up observation process
obs <- data.frame(

dataNames = "Robs",
dist = "pois",
p1 = "R + 1e-5",
p2 = NA,
stringsAsFactors = FALSE

)

set up model (no need to specify tspan
argument as it is set in PMCMC())
transitions <- c(

"S -> beta * S * I / (S + I + R + R1) -> I",
"I -> gamma * I -> R",
"R -> gamma1 * R -> R1"

)
compartments <- c("S", "I", "R", "R1")
pars <- c("beta", "gamma", "gamma1")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars,
obsProcess = obs

)

set priors
priors <- data.frame(

parnames = c("beta", "gamma", "gamma1"),
dist = rep("unif", 3),
stringsAsFactors = FALSE)

priors$p1 <- c(0, 0, 0)

window.PMCMC 39

priors$p2 <- c(5, 5, 5)

define initial states
iniStates <- c(S = 762, I = 1, R = 0, R1 = 0)

set.seed(50)

run PMCMC algorithm
post <- PMCMC(

x = flu_dat,
priors = priors,
func = model,
u = iniStates,
npart = 25,
niter = 5000,
nprintsum = 1000

)

plot MCMC traces
plot(post, "trace")

continue for some more iterations
post <- PMCMC(post, niter = 5000, nprintsum = 1000)

plot traces and posteriors
plot(post, "trace")
plot(post)

remove burn-in
post <- window(post, start = 5000)

summarise posteriors
summary(post)

window.PMCMC Time windows for PMCMC objects

Description

window method for class PMCMC.

Usage

S3 method for class 'PMCMC'
window(x, ...)

40 window.PMCMC

Arguments

x a PMCMC object, usually as a result of a call to PMCMC.

... arguments to pass to window.mcmc

Details

Acts as a wrapper function for window.mcmc from the coda package

Value

a PMCMC object

See Also

PMCMC, print.PMCMC, predict.PMCMC, summary.PMCMC plot.PMCMC

Examples

set up data to pass to PMCMC
flu_dat <- data.frame(

t = 1:14,
Robs = c(3, 8, 26, 76, 225, 298, 258, 233, 189, 128, 68, 29, 14, 4)

)

set up observation process
obs <- data.frame(

dataNames = "Robs",
dist = "pois",
p1 = "R + 1e-5",
p2 = NA,
stringsAsFactors = FALSE

)

set up model (no need to specify tspan
argument as it is set in PMCMC())
transitions <- c(

"S -> beta * S * I / (S + I + R + R1) -> I",
"I -> gamma * I -> R",
"R -> gamma1 * R -> R1"

)
compartments <- c("S", "I", "R", "R1")
pars <- c("beta", "gamma", "gamma1")
model <- mparseRcpp(

transitions = transitions,
compartments = compartments,
pars = pars,
obsProcess = obs

)

set priors
priors <- data.frame(

window.PMCMC 41

parnames = c("beta", "gamma", "gamma1"),
dist = rep("unif", 3),
stringsAsFactors = FALSE)

priors$p1 <- c(0, 0, 0)
priors$p2 <- c(5, 5, 5)

define initial states
iniStates <- c(S = 762, I = 1, R = 0, R1 = 0)

set.seed(50)

run PMCMC algorithm
post <- PMCMC(

x = flu_dat,
priors = priors,
func = model,
u = iniStates,
npart = 25,
niter = 5000,
nprintsum = 1000

)

plot MCMC traces
plot(post, "trace")

continue for some more iterations
post <- PMCMC(post, niter = 5000, nprintsum = 1000)

plot traces and posteriors
plot(post, "trace")
plot(post)

remove burn-in
post <- window(post, start = 5000)

summarise posteriors
summary(post)

Index

∗ datasets
ebola, 10
smallpox, 34

ABCRef, 3
ABCSMC, 4, 5, 14, 26, 35

compileRcpp, 9, 13

ebola, 10

mparseRcpp, 10, 11, 19, 31, 33

plot.ABCSMC, 7, 13, 26, 35
plot.PMCMC, 16, 23, 25, 29, 38, 40
plot.SimBIID_runs, 18, 31, 33
PMCMC, 17, 20, 25, 29, 38, 40
predict.PMCMC, 17, 23, 24, 29, 38, 40
print.ABCSMC, 7, 14, 26, 35
print.PMCMC, 17, 23, 25, 28, 38, 40
print.SimBIID_model, 13, 30
print.SimBIID_runs, 19, 31, 33

run, 13, 19, 31, 32

SimBIID-package, 2
smallpox, 34
summary.ABCSMC, 7, 14, 26, 35
summary.PMCMC, 17, 23, 25, 29, 37, 40

window.mcmc, 40
window.PMCMC, 17, 23, 25, 29, 38, 39

42

	SimBIID-package
	ABCRef
	ABCSMC
	compileRcpp
	ebola
	mparseRcpp
	plot.ABCSMC
	plot.PMCMC
	plot.SimBIID_runs
	PMCMC
	predict.PMCMC
	print.ABCSMC
	print.PMCMC
	print.SimBIID_model
	print.SimBIID_runs
	run
	smallpox
	summary.ABCSMC
	summary.PMCMC
	window.PMCMC
	Index

